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Abstract 
 
 
This paper presents a database edit algorithm that is defined on a two component 
file. The first component changes over time and the second component is static 
over time. The algorithm presented is defined to minimize errors in the database 
with minimum computation time and has been successfully applied to a large 
database consisting of information on electric power plants each month for one 
year. 
 
 
1. Introduction 
 
The basic ob1ectives of this paper are two-fold. The first is to show how data 
can be analyzed in such a way that errors can be explicitly defined using 
mathematics, statistics, and heuristics. The second is to develop an algorithm 
to find the defined errors. 
 
The database to which these methods were developed is the Federal Power 
commission (FPC) Form Monthly Power Plant Report. It contains monthly data from 
all electric utilities (approximately 834) or net generation, consumption of 
coal, oil, and natural gas, and end-of-the-month stocks of coal and oil for each 
plant (approximately 3069) by prime mover by fuel type combination. These data 
have many attributes that change from month to month. Ten years of data are 
available. 
 
We present a database edit algorithm that learns over time as data are loaded 
into the database. This algorithm is defined over a two component file. The 
first component is static over time and the second component changes over time. 
 
Data entering the database are affected by many types of errors. The errors 
considered in this paper are measuring, conversion, and submittal errors 
introduced by incorrect measurement of various parameters that are elements of 
the database; i.e., the measuring of electricity generation at the power plant.  
Conversion errors are errors introduced by submitting data in one form and 
converting it to another form suitable for computing; i.e., the process of 
proportioning generation at a power plant according to prime movers. Submittal 
errors occur during the process of transforming data from one medium to another; 
i.e., the process of keypunching data into a data entry device. These three 
types of errors are detected using statistically based rules and computer 
algorithms.  The use of statistical rules to insure data base quality is called 
database quality assurance.    
 
2. Generalized Database Quality Assurance Algorithm 
 
The basic unit that is processed is a data processing system is called an item 
or record. An item is made up of two parts: the key and the data. A key is that 



part of a record that distinguishes the record from all other records. The data 
are the parts of records which are not keys and usually comprise multiple 
fields. A set of records is a file, and a set of files is called a database. A 
database with keys and data stored on a direct access storage device is called a 
very large database. 
 
A generalized database quality assurance algorithm involves some test on the 
functional relationships between various elements in the database. The tests 
involving functional relationships between various elements in the database are 
classified as deterministic. Heuristics tests are general rules of thumb applied 
by the average person to decide if the data are good or bad. A generalized 
algorithm must have a set of well-defined attributes. Some attributes are: 

• The algorithm must automatically check errors using methods based on 
historical data (i.e. data that have been accepted by the algorithm). 

• The algorithm is modular to minimize update time. 
• One person is allowed to by-pass the comparator-analyzer in the algorithm. 
• The algorithm learns from previous data over time. 
• The constrained verification part of the algorithm (that part of the 

algorithm that allows data to pass as good without entering the 
comparator-analyzer a second time) implements the management quality 
assurance policy. 

These attributes are implemented in an algorithm flow chart in Figure 1. We 
discuss first the components of the algorithm and then the mathematics of the 
feature extractor, including both the initial evaluation of historical data and 
the development of statistical tests for error detection. The parameters of 
these tests are updated as each new data point is accepted. 
 



 
 
Figure 1.  Generalized Database Quality Assurance Algorithm 
 
2.1. Components of the Generalized Quality Assurance Algorithm 
(QAA) 
  
There are two components of the generalized QAA presented in Figure 1.  These 
components are the feature extractor and the comparator-analyzer. 
 
The feature extractor has two parts.  The first part is defined on those 
features that are extracted overlong time periods. Data from previous months are 
used to extract features that do not change for many months. 
For example, the use of spectral analysis to classify data values as having 
different structures: no usable structure, but exhibiting white noise: data 
values with an overall increase of decrease, usually a linear trend; and data 
values with periodic variation, usually seasonal.  These features are static 
over a fixed time period and they are not updated each month.  The second part 
of the feature extractor is defined on those features that change of must be 
updated after each data element is accepted in the data base.  Features that 
change for every data value are called dynamic features, and include such 
statistics as the mean, standard deviation or variance. 
 
Dynamic features raise important implementation issues.  Two basic issues must 
be considered in selecting and processing features.  First, we must minimize 



computation time.  Second, we must minimize the number of disk accesses required 
to find or change data. 
 
The comparator analyzer must have the capability of operating on both the static 
and dynamic features. Decisions are made about data that affect the overall 
quality of the data and data base policy. This part of the algorithm must be 
designed and analyzed to accomplish the implementer goals, such as sensitivity 
or specificity criteria or merely error hounds. 
 
In Figure 1, we see that learning occurs after a data element has been accepted 
as good, or it has a constrained bypass label of good.  Automatic learning is 
accomplished by updating the dynamic components using the feature extractor. The 
components are changed and written on the disk.  When data arrives the 
components associated with the data are retrieved and used by the comparator-
analyzer to check the data. 
 
3.  Mathematics of the Feature Extractor 
 
As the information is entered into the computer, it begins flowing through the 
generalized data editing algorithm.  The information is subjected to a variety 
of consistency checks. The checks involve tests on static and dynamic feature 
components. This first level of classification of the data is defined on the set 
of static features.  The size of the FPC Form 4 database with approximately 
17,280,000 items prohibits the use of manual classification. The correlation of 
these data in most cases makes it impossible to classify them according to their 
properties, without the use of computing machines. Various mathematical or 
statistical techniques are used to characterize power generation, fuel 
consumption, and stocks data according to the properties of the historic data.   
Classifying data according to the properties of the data assigning the 
properties to a fixed and dynamic class is called feature extraction. (See Table 
1.) 
 
Table 1.  Feature Extraction Property Classification 
 
 Classification 
Method Fixed     Dynamic 
Spectral Analysis X                 
Dixon Test X         X  
Influence Function Test X         X  
T-Test X         X 
Exponential Lag Time 
    Series Test 

 
X         X 

Regression Analysis 
    L-One Norm 
    L-Two Norm 
    L-Infinity Norm   

 
X 
X 
X 

 
 
The tests can also be classified into categories of univariate and multivariate. 
(See Table 2.) 
 
 
 
 
 
 



Table 2.  Test Classification 
                                      Univariate                 Multivariate 
Available Test White Noise Trend Seasonal 
Spectral Analysis X X X X 
Dixon   X  
T-Test X X X  
Influence Function   X X 
Exponential Lag 
    Time Series 

 
X 

 
X 

 
X 

 

Regression Analysis     
    L-One X X X  
     L-Two X X X X 
     L-Infinity X X X  
 
The techniques to extract features from data are presented in more detail in 
sections 3.1 – 3.6, of this paper. 
 
3.1. Spectral Analysis Test 
 
We are interested in classifying variables that change over time into classes 
based on the historic behavior of the data. These classes are used to 
effectively evaluate whether new data value are correct. This is done by 
estimating the spectral and cross-spectral densities of a multivariate time 
series. 
 
Spectral analysis is used to find cyclical patterns or periodicities in the 
data.  The variables are classified into x categories with associated parameters 
and bounds.  Various methods are used to decide whether a new datum value falls 
within the appropriate bounds, in which case we call it good.  If it lies 
outside the boundaries we call it bad and take appropriate steps to verify the 
data, such as telephoning the response to check the data. 
 
A finite Fourier transform is used to decompose the historic values of a 
specified variable into a sum of sine and cosine waves of different amplitudes 
and frequencies.  The finite Fourier transform is 
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n is the number of observations, 
 
ak are the cosine coefficients, 



 
bk are the sine coefficients, and 
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The periodogram is defined as 
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where k = 1, …, n, and m ≥ (n -1) / 2 .  
 
P ( k ) represents a sum-of-squares in an analysis of variance sense for each 
decomposition of the process into 2 degrees-of-freedom components for each of  
the frequencies. 
 
To classify the data using spectral analysis for periodicities we hypothesize 
that a time series is represented by 
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where the et are normal independent random variable with A and B fixed. 
The test for seasonality is a test of the hypothesis A = B = 0 against the 
alternative A ≠ 0 or B ≠ 0. This is accomplished by using 
 
 

∑

∑

≠
=

−

=
− = m

kj
j

j
n

m

k
k

n

m

w

w
P

P
F

1

1

12
12

)(

)(
 

 

where   has the F-distribution with 2 and 2m-2 degrees of freedom. 2
22 −mF

 
The test statistic for white noise using equation (3) to test the null model is 
f(t) = μ + et  , and the alternative model is 
f(t) = μ + A cos wt + B sin wt + et . 
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where Pn (L) is the largest periodogram ordinate in a sample of a periodogram 
ordinates each with two degrees of freedom. This is a multiple of a random 
variable with a chi-square distribution with two degrees of freedom. 
For Pn(L) ≥ Pn (wk) for every k we have white noise. 
 

The most efficient way to compute the finite Fourier coefficients is presented 
by Cooley and Tukey [7].  Details of theoretical results of this method are 



presented by Fuller [11], and Box and Jenkins [4, 5]. The method used here for 
spectral analysis is presented by the SAS Guide [20]. 
 
The results of the spectral analysis used to classify variables. The classes 
that are of interest here are data values with no usable structure, data values 
with an over-all increase or decrease, and data values with periodic variation. 
 
The type of test applied to the data values is determined by the category. Tests 
over all data and difference tests are applied effectively to white noise data. 
Difference tests and ratio tests are effective on a class of linear trend data. 
The effective tests for the seasonal class are tests over successive seasonal 
values within classes. 
 
3.2. Dixon Test 
 
The data we are analyzing are time series, and it is possible that the mean or 
variance, or both, change over time (a possible seasonal effect). The Dixon test 
is applied to the data in seasonal groups. The historic series are also used to 
estimate parameters needed to test a specific new data value (used to determine 
the best critical value of the statistic). The Dixon criteria, based entirely on 
ratios of differences between the observations may be used in cases where it is 
desirable to avoid calculation of the standard deviation or where quick judgment 
is required. For this test, the sample criterion or statistic changes with 
sample size. This univariate outlier test is simple and can be applied to 
indicate whether or not the largest or smallest observation is significantly far 
removed from the main body of the data. 
 
Consider a sample observations x1, x2, … , xn . 
 
Let xl denote the smallest value and xn the largest value. The Dixon statistic 
is 
 
r10 = (xn – xn-1) / (xn – x1).                 (5) 
 
The symmetric population statistic is 
 
r01 = (x2 – x1) / (xn – x1). 
 
Details on this method and other outlier detection methods are presented in 
various sources [1, 7, 10, 12, 15]. 
 
3.3. T-Test 
 
This test is suitable for white noise. The mean and standard deviation are 
updated as dynamic variables in the feature extractor.  After the variables are 
updated we say that the algorithm has learned from the current accepted data. 
Consider a sample of n observations xl ≤ , ≤ x2, . . . , ≤ xn. 
 
Let xn be a suspected outlier. The sample mean of all values is 
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Using the mean in (6) we calculate the standard deviation as 
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The test for a single outlier is written using equations (6) and (7) as 
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Equation (8) is used to test for any doubtful value. The value Tn is used to 
test the hypothesis that all observations in the sample come from the same 
normal population. The acceptance region is defined by the significance level. 
Details about this method are presented in [8, 13, 15]. 
 
3.4. Influence Function Test 
 
A paper written by Hampel in [14] treats the first derivative of an estimator 
viewed as functional and the ways in which it can be used to study local 
robustness properties. To understand this approach, consider a sample of real-
valued observations x1, . . . , xn and their sample mean 
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as estimator for the population mean.  The basic idea involved here is: How does 
the mean change if we introduce a new observation at some point x?  The new mean 
is defined as x 
 

.
1

)(

1

1

1
_

 
n

x

n

n

i
i

x
+

=+

∑
+

=  

The change is 
 

n  
n
nn

   n    xxxxx
_

n
−

+
=−

+
+ 1

( )
_

_

1

_

 

 

           (9)                                                         
n

nxx .
1

( )
_

+

−
=  

 
Studying equation (9) we find the influence of a single observation with value 
x. This shows the relationship between the original sample size and the new 
observation. The influence of the single observation x, is inversely 



proportional to the original sample size. When the sample size is fixed, the 
error increases linearly with the differences between x and the original mean 
over all bound. 
 
In this context, the sample variance of a observation is affected by adding a 
single observation in x as 
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When | x | < sn, the sample variance decreases by as much as 
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As | x | increase without bound, the variance grows quadratically over all 
bounds. 
 
The approach described above illustrates the characteristics of influence 
function test in general.  A particular influence function test depends on the 
parameter being estimated, the observation vector whose influence is being 
measured, and the distribution function of a random observation of a random 
observation vector.  The influence function defined mathematically is 
 
θ  = T (F),                                    (11)   
 
a functional of the distribution F.  The influence function presented in [6, 9] 
is T (y : θ ) at y. 
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The influence function test over a11 data in the historical sample may be 
considered. The new observation is used with the influence function test to 
decide whether the new observation is an outlier or a valid observation. 
We reject an observation with too great an influence. 
 
3.5. Exponential Lag Time Series Test 
 
The exponential lag test is suitable for between-variable comparisons and for 
the detection of white noise.  We wish to forecast some data values for at least 
one period based on historical data. It is desirable to be able to make these 
forecasts quickly, cheap1y, and easily.  The number of pieces of information 
required to do the forecast must be kept at a minimum. The method must be 
adaptive and capable of learning from past experiences. The method must have 



predictive capability for at least one period. A model that incorporates all of 
these attributes is the exponential model. 
 
This model varies with the type of data being forecasted. Predicting data with 
no definite seasonal pattern and no long run trend is accomplished using the 
following procedure. Take the weighted average of all past observations and use 
it as a forecast of the present mean of the distribution. 
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where =Et  data values during the t'th period, 

=tE
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  forecast of the expected data values in the t'th period, and 0 ≤ α ≤ 1. 

 
This model applied to seasonal data are defined to adjust for the seasonal 
trends. 
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where 0 ≤ α  ≤  1, and L is a month period usually 12 months.  The estimate of 
the expected deseasonalized data values in period t is 
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where 0 ≤ β ≤  1, for the estimate of the seasonal factor for period t. 
The value of Et from equation (13) is used in forming a new estimate of the 
seasonal factor in equation (14). The new estimate Ft, is a weighted sum of the 

current estimates, 

t

E

E
t

_ , and the previous estimate, Et-L+1.  A forecast of the 

expected data values in the following period is 
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For more details on this method see [2, 12, 18, 24]. The exponential lag time  
Series test may be used over all data values to calculate the necessary 
information for the exponential lag time series model. Equations (13), (14), and 
(15) are used to forecast the data values for the following period. 
Selective data values are used to take into account the seasonal trends. This 
method is used since the exponential lag data values as a function of α. In this 



case, the predicted value would be a better approximation of the value in the 
following period. 
 
3.6. Regression Analysis 
 
Regression analysis methods are suitable for trend, white noise, and seasonal 
data. These methods are sometimes limited because they assume knowledge of some 
functional relationship between the data values.  The regression methods 
discussed here are those where the functional relationship is known and we 
desire to find the associated coefficients to minimize the error in some norm 
[3, 16, 21, 22]. 
 
 
3.6.1. L-One Norm 
 
In this norm we desire to determine the coefficients of F(t) to satisfy the L-
One norm criterion. The L-One criterion requires that the absolute sum of the 
deviations be minimized as 
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A modified Levenberg-Marquardt algorithm using linear programming is used to 
solve the L-one approximation problem [16, 22]. This method works best when the 
errors are independent and follow a double exponential distribution. 
 
3.6.2. L-Two Norm 
 
We assume that the error is normally distributed.  Given a function F(t) that 
approximates a function f(t), the L-Two norm is 
 
Minimize 
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In this case the function F(t) may be linear or nonlinear with coefficients to 
be determined. 
 
In some cases the function F(t) is approximated over all the data values.  This 
assumes you can find a suitable F(t)to approximate f(t). The coefficients are 
obtained using the methods defined by Shrager [21].  Differences are taken over 
successive data values to take into account possible seasonal behavior. The 
function F(t) is determined to minimize the square root of the square of the 
differences. 
 
3.6.3. L-Infinity Norm 
 
The coefficients of the approximating function F(t) are determined to satisfy 
the L-infinity norm criterion. The L-infinity criterion requires that the 
maximum absolute deviation of F(t) from f(t) be minimum: that is, 
 
 
 



Minimize 
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This nonlinear function approximation is made using a modified Levenberg-
Marquardt method and linear programming. An algorithm is used that approximates 
functions in the L-infinity norm [16, 22]. This method should be used when the 
data has outliers that must be considered with great importance. In an 
extrapolation using this norm, the maximum error will always be known. The 
approximating function is determined using all the data. The coefficients of the 
approximating function are used to forecast new data values. 
 
4.  Mathematics of a Comparator Analyzer 
 
The comparative analyzer uses a new data value and extracted features from the 
data base on past history to decide the validity of the new data value.  This 
usually involves setting up a discriminate region, confidence intervals, 
tolerance, α in an exponential lag model and significance levels. 
 
An example is presented below to illustrate how the comparator works.  In this 
example, a quadratic discriminate function is applied to data.  A simple 
discriminate region is defined by considering a function 
 
F(x) – Ax2 + Bx + C, 
 
Where A, B, C are unknown coefficients to be determined in some norm. 
 
F(x*) = A(x*)2 + Bx* + C, 
 
for some x* (i.e. a new data value). 
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When (18) is true then x* is in the region; otherwise, it is outside of the 
region defined by the inequality.  Confidence intervals for the comparator 
analyzer are defined as follows: 
 
μ  - Is the mean of a normal distribution, when the variance,  , is unknown. 

 

x
_

 - Is a random variable, the sample mean, obtained from a random sample of 

size n. 
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In this case Y is an estimator of μ whose distribution depends on μ. 
 
The confidence interval is 
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where t n 1:2/ −α  in the 100α / 2 percentage point of t. 

 
An error tolerance is used in many cases to decide on a certain acceptable level 

of error.  Let F* (p, x, y) be a feature function value.  Let F
~

(p, x, y) be a 

test or a new function value.  The tolerance is defined as 
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5. Conclusion 
 
We have found that a collection of feature extraction methods is required 
to locate errors in a data base with a varity of parameters having different 
statistical properties. Two major objectives govern the methods discussed here. 
The first is minimum computation time and the second is maximum error 
resolution. To accomplish these objectives we have partitioned the set of 
applicable methods of mathematical feature extraction into two classes: namely, 
fixed and dynamic. The partitioning is not unique since some methods of 
mathematical feature extraction are in both classes. The dynamic class contains 
those methods that are computationally feasible in accomplishing our goal of 
minimum computation time. 
 
The spectral analysis test used in this algorithm has been a useful method for 
looking at the historical data.  This method was used to partition the 
historical data into subclasses.  Computationally, this is a fixed type 
classification. The results of this analysis are used to decide the type of 
dynamic test to apply for error resolution. The regression analysis methods were 
hard to apply because they require previous knowledge about the structure of the 
data to associate a particular function to fit. These methods are classified as 
fixed by our computation objective. 
 
The generalized data base quality assurance algorithm presented in figure 1 was 
applied to a test batch of records. A summary of the results is presented in 
[2], and Table 3). 
 
Table 3. Algorithm Summary for Test Batch 
Processing Time Number of Errors Found Number of Variables 
22.91 sec 158 13,340 
 



We plan to study the learning capabilities of this algorithm. Many issues must 
be resolved to improve the quality of a data base. For a given set of data an 
optimum fixed parameter file update interval must be developed. In the dynamic 
parameter file an optimum strategy must be found to update the file to insure 
maximum error resolution, without the necessity of generating too many data 
points.  This involves finding a balance between sensitivity and specificity.  
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